Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 15085, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37699917

RESUMEN

Soil organic carbon is one of the largest surface pools of carbon that humans can manage in order to partially mitigate annual anthropogenic CO2 emissions. A significant element to assess soil sequestration potential is the carbon age, which is evaluated by modelling or experimentally using carbon isotopes. Results, however, are not consistent. The 14C derived approach seems to overestimate by a factor of 6-10 the average carbon age in soils estimated by modeling and 13C approaches and thus the sequestration potential. A fully independent method is needed. The cosmogenic chlorine nuclide, 36Cl, is a potential alternative. 36Cl is a naturally occurring cosmogenic radionuclide with a production that increased by three orders of magnitude during nuclear bomb tests. Part of this production is retained by soil organic matter in organochloride form and hence acts as a tracer of the fate of soil organic carbon. We here quantify the fraction and the duration of 36Cl retained in the soil and we show that retention time increases with depth from 20 to 322 years, in agreement with both modelling and 13C-derived estimates. This work demonstrates that 36Cl retention duration can be a proxy for the age of soil organic carbon.

2.
J Environ Radioact ; 268-269: 107264, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37572511

RESUMEN

Once released into the atmosphere, radionuclide dry deposition represents a major transfer process. It can be accurately characterized by its deposition velocity. However, this parameter is poorly constrained for most radionuclides, including chlorine 36. Chlorine 36 is a radionuclide of cosmogenic and anthropogenic origin. It may be discharged into the environment as gases and/or particles during the decommissioning of nuclear plants and the recycling of nuclear fuels. In this study, chlorine 36 deposition velocities are, for the first time, experimentally determined on grass downwind from the Orano La-Hague plant. The atmospheric chlorine 36 measurements were on average 50 nBq.m-3 for the gaseous fraction and 19 nBq.m3 for the particulate fraction. To measure the chlorine 36 transferred from the atmosphere to the grass, a method was devised for extracting the chlorides contained in solid matrices. With this method, chlorides were extracted with a mean efficiency of 83%. Chlorine 36 concentrations in the grass were on average 4 µBq.g-1, suggesting fast uptake of atmospheric chlorine 36. The yielded 36Cl dry deposition velocities varied with the season and were between 1 × 10-3 and 6 × 10-3 m s-1. The chlorine 36 depositions were modelled by adapting the existing deposition models and based on meteorological and micro-meteorological data. The dry deposition velocities calculated by the model showed less than one order of magnitude of difference with those determined experimentally. The deposition fluxes calculated by the model showed that the atmospheric depositions were predominantly gaseous chlorine 36 (>97%). However, on remote sites, the particulate fraction could be larger and have a greater influence on dry deposition. As chlorine 36 is a highly soluble and bioavailable element, these results will enable a better study of its behaviour in the environment and a more accurate evaluation of its dosimetric impact.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo de Radiación , Monitoreo del Ambiente , Cloro , Pradera , Cloruros , Gases , Radioisótopos , Poaceae , Plantas , Contaminantes Atmosféricos/análisis
3.
Nature ; 619(7968): 94-101, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37407683

RESUMEN

Despite numerous studies on Himalayan erosion, it is not known how the very high Himalayan peaks erode. Although valley floors are efficiently eroded by glaciers, the intensity of periglacial processes, which erode the headwalls extending from glacial cirques to crest lines, seems to decrease sharply with altitude1,2. This contrast suggests that erosion is muted and much lower than regional rock uplift rates for the highest Himalayan peaks, raising questions about their long-term evolution3,4. Here we report geological evidence for a giant rockslide that occurred around 1190 AD in the Annapurna massif (central Nepal), involving a total rock volume of about 23 km3. This event collapsed a palaeo-summit, probably culminating above 8,000 m in altitude. Our data suggest that a mode of high-altitude erosion could be mega-rockslides, leading to the sudden reduction of ridge-crest elevation by several hundred metres and ultimately preventing the disproportionate growth of the Himalayan peaks. This erosion mode, associated with steep slopes and high relief, arises from a greater mechanical strength of the peak substratum, probably because of the presence of permafrost at high altitude. Giant rockslides also have implications for landscape evolution and natural hazards: the massive supply of finely crushed sediments can fill valleys more than 150 km farther downstream and overwhelm the sediment load in Himalayan rivers for a century or more.

4.
Sci Data ; 8(1): 87, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33753737

RESUMEN

We present a database of field data for active faults in the central Apennines, Italy, including trace, fault and main fault locations with activity and location certainties, and slip-rate, slip-vector and surface geometry data. As advances occur in our capability to create more detailed fault-based hazard models, depending on the availability of primary data and observations, it is desirable that such data can be organized in a way that is easily understood and incorporated into present and future models. The database structure presented herein aims to assist this process. We recommend stating what observations have led to different location and activity certainty and presenting slip-rate data with point location coordinates of where the data were collected with the time periods over which they were calculated. Such data reporting allows more complete uncertainty analyses in hazard and risk modelling. The data and maps are available as kmz, kml, and geopackage files with the data presented in spreadsheet files and the map coordinates as txt files. The files are available at: https://doi.org/10.1594/PANGAEA.922582 .

5.
Proc Math Phys Eng Sci ; 474(2213): 20170470, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29887740

RESUMEN

205Tl in the lorandite (TiAsS2) mine of Allchar (Majdan, FYR Macedonia) is transformed to 205Pb by cosmic ray reactions with muons and neutrinos. At depths of more than 300 m, muogenic production would be sufficiently low for the 4.3 Ma old lorandite deposit to be used as a natural neutrino detector. Unfortunately, the Allchar deposit currently sits at a depth of only 120 m below the surface, apparently making the lorandite experiment technically infeasible. We here present 25 erosion rate estimates for the Allchar area using in situ produced cosmogenic 36Cl in carbonates and 10Be in alluvial quartz. The new measurements suggest long-term erosion rates of 100-120 m Ma-1 in the silicate lithologies that are found at the higher elevations of the Majdanksa River valley, and 200-280 m Ma-1 in the underlying marbles and dolomites. These values indicate that the lorandite deposit has spent most of its existence at depths of more than 400 m, sufficient for the neutrinogenic 205Pb component to dominate the muon contribution. Our results suggest that this unique particle physics experiment is theoretically feasible and merits further development.

6.
Proc Natl Acad Sci U S A ; 109(21): 8002-6, 2012 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-22566649

RESUMEN

Since its discovery, the Chauvet cave elaborate artwork called into question our understanding of Palaeolithic art evolution and challenged traditional chronological benchmarks [Valladas H et al. (2001) Nature 413:419-479]. Chronological approaches revealing human presences in the cavity during the Aurignacian and the Gravettian are indeed still debated on the basis of stylistic criteria [Pettitt P (2008) J Hum Evol 55:908-917]. The presented (36)Cl Cosmic Ray Exposure ages demonstrate that the cliff overhanging the Chauvet cave has collapsed several times since 29 ka until the sealing of the cavity entrance prohibited access to the cave at least 21 ka ago. Remarkably agreeing with the radiocarbon dates of the human and animal occupancy, this study confirms that the Chauvet cave paintings are the oldest and the most elaborate ever discovered, challenging our current knowledge of human cognitive evolution.


Asunto(s)
Antropología Cultural/métodos , Arqueología/métodos , Cuevas , Pinturas/historia , Datación Radiométrica/métodos , Evolución Cultural/historia , Francia , Historia Antigua , Humanos , Tecnología de Sensores Remotos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...